

Guidance and Examples MSG-3 Decision Logic Trees

A **decision logic tree** in the MSG-3 methodology is a tool used to evaluate failure modes and determine the appropriate maintenance actions for aircraft systems and components.

It systematically guides maintenance planners through a series of questions and decisions, ensuring tasks are selected based on operational, safety, and economic considerations.

Structure of a Decision Logic Tree

 Identify the System or Component Start with the specific system or component under analysis (e.g., hydraulic pump, avionics module).

2. Define the Failure Mode

Specify the potential failure mode (e.g., leakage, software glitch, overheating).

3. Assess the Impact of Failure

- Safety Impact: Does the failure compromise safety?
- **Operational Impact**: Does it disrupt normal operations?
- Economic Impact: Does it lead to increased costs?
- 4. Evaluate Detection and Prevention Methods
 - o Is the failure evident (can it be seen or detected during operation)?
 - o Can the failure be prevented through condition monitoring or inspections?

5. Select the Maintenance Task

Choose the task type based on the failure mode and its criticality:

- Preventive task (scheduled maintenance)
- Predictive task (condition-based monitoring)
- Corrective task (run-to-failure)

6. Determine the Task Interval

Establish how often the task should be performed, based on historical data, failure probabilities, and regulatory requirements.

Example 1: Decision Logic Tree for a Hydraulic Pump

Failure Mode: Leakage from hydraulic pump seals

Decision Logic Tree:

1. Is the failure safety-critical?

- **Yes:** Proceed to next step.
- **No:** Consider operational or economic consequences.

2. Can the failure be detected during operation?

- **Yes:** Schedule frequent operational checks.
- **No:** Implement periodic inspections.

3. Is there a condition-monitoring system available?

- **Yes:** Use sensors to monitor hydraulic pressure and fluid levels.
- **No:** Increase inspection frequency.

4. Select Task Type:

- Preventive: Replace seals periodically.
- Predictive: Monitor system for early signs of wear.

5. Determine Interval:

• Every 500 flight hours based on historical data and FMEA results.

Outcome:

Perform preventive maintenance every 500 flight hours and install sensors for predictive monitoring.

Example 2: Decision Logic Tree for Avionics System

Failure Mode: Software malfunction in navigation system

Decision Logic Tree:

1. Is the failure safety-critical?

- Yes: Immediate software patch or replacement.
- **No:** Proceed to next step.

2. Can the failure be detected by pilots or crew?

- **Yes:** Include operational procedures for reporting.
- **No:** Implement periodic system diagnostics.

3. Is a software update available to prevent recurrence?

- **Yes:** Schedule updates quarterly.
- **No:** Monitor performance logs for anomalies.

4. Select Task Type:

- Preventive: Perform routine software updates.
- Predictive: Analyze performance logs for early warnings.

5. Determine Interval:

- Software diagnostics: Every 3 months.
- Update schedule: Quarterly.

Outcome:

Implement quarterly software updates and monitor system logs monthly for anomalies.

Example 3: Decision Logic Tree for Composite Wing Inspection

Failure Mode: Delamination of composite material

Decision Logic Tree:

- 1. Is the failure safety-critical?
 - Yes: Immediate inspection and repair.
 - **No:** Proceed to next step.
- 2. Is the failure evident during visual inspection?

- **Yes:** Add visual inspections to scheduled checks.
- **No:** Implement advanced NDT methods (e.g., ultrasonic testing).

3. Can the failure be detected through condition monitoring?

- **Yes:** Use structural health monitoring systems.
- **No:** Increase inspection frequency with NDT.

4. Select Task Type:

- Preventive: Ultrasonic inspection every 1,000 flight hours.
- Predictive: Structural monitoring system integration.

5. Determine Interval:

- Scheduled ultrasonic inspections: Every 1,000 flight hours.
- Structural monitoring system checks: Monthly.

Outcome:

Schedule ultrasonic inspections every 1,000 flight hours and integrate structural health monitoring for real-time updates.